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A Survey of Current Temperature Dependent

Elastic-Plastic-Creep Constitutive Laws for Applicability

to Finite Element Computer Codes

David H. Allen*

ABSTRACT

The volume of the research effort currently under way to characterize

the constitution of thermoelastic-plastic-creep materials is ample evidence

of its importance. Although significant work has been done to obtain working

constitutive models, in many cases the theory has not been cast with the re-

mainlng field equations into a working continuum model. In this paper the

author will consider models from classical plasticity and nonlinear visco-

elasticity theory for applicability to the conservation of momentum. Based

on physical accuracy as well as computational efficiency the author will assess

the feasibility of further development of each model.
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A Survey of Current Temperature Dependent

Elastic-Plastic-Creep Constitutive Laws for Applicability

to Finite Element Computer Codes

David H. Allen*

INTRODUCTION

Current growth in computer capability has brought a parallel expansion

in the research area dealing with the predicted response of materials whose

constitution is nonlinear. One result of this tremendous explosion of tech-

nology has been the need for increasing specialization among scientists and

engineers. This specialization has caused the division of constitutive

theorists into two distinct and often noninteracting groups: the materials

scientists and the mechanics engineers. Each group employs a different

approach. Whereas the materials scientist develops a theory based on micro-

structure, the engineering mechanist tends to formulate a model from continuum

theory. The result is that many microstructurally based theories are compu-

tationally weak, while continuum theories fail to satisfy microstructural

constraints.

A sound constitutive theory must be both physically and computationally

effective. In order to establish both of these criteria it is necessary to

understand the problem at hand. Therefore, in the first section of this

*Graduate Research and Teaching Assistant, Texas A&M University, College
Station, Texas 77843

I,,

... .. ** /



paper the author will define the constraints precisely. Following this two

models for analyzing thermoelastic-plastic solids will be proposed. Finally,

the author will consider strengths and weaknesses of each in order to assess

which model is more suitable for further research.

I

2i



PHYSICAL AND COMPUTATIONAL REQUIREMENTS OF THE MODEL

There are four requirements which a useful constitutive theory must

satisfy: thermodynamics, physics, mathematics, and experimental data reqvire-

ments. In this section each of these requirements will be outlined for the

material models to be considered herein.

Thermodynamics

Thermodynamics should be used as the starting point for any constitutive

theory. From this constraint will come a general mathematical framework for

the model.

Recall that the result of the first and second laws applied to a general j

system in the neighborhood of the equilibrium state is the following N non-

linear equations of motion [1, 2, 31:

dq1  (1)I__H_ + b' j = Q

3q1 + ij dt

where H, the Helmholtz free energy, is given by:

H = H(q1, T) 7 U - TS , (2)

U is defined by the first law of thermodynamics to be internal energy, and

S and T are defined by the second law of thermodynamics to be entropy and

temperature, respectively. In addition, Qi and q, are generalized forces and

displacements, respectively. The nonlinearity in equation (1) arises from

the functionality of F in equation (2) and the form of b = bI(qk T).
ij i j

Under suitably small displacements, Qm may be regarded as the Infinitesimal

stress tensor, and qn as the corresponding strain tensor, where m.n 1,2... 6.
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The remaining coordinates are called hidden coordinates due to the fact

that the generalized forces for these indices are identically zero.

The specific mathematical form of the constitutive law will come

from the form of the Helmholtz free energy suitable for modelling the

material under consideration. For the thermoelastic-plastic material

considered herein, it is assumed that the free energy may be expanded

about any equilibrium configuration in a second order Taylor series
it

expansion with respect to hidden coordinates similar to that previously

proposed [I, 4]:

H H + d q + a Iq q , (3)
e r r rsrs

where

H =1H (qm, T) Helmholtz free energy in state e,e e

dr =dr (qm' T) - (DH/Dqr)e, and

a' = a' (qm' T) = a2 H/ q ,
rs rs sr r se

the subscript e denotes any equilibrium state for which all Qi  0, and

subscripts r, s, and t range only over indices corresponding to hidden

coordinates. Substitution of equation (3) into equations (1) will yield

the following equations of motion:

4



aH0
3He + 9dr q+ rss + mj dqj 4

for indices corresponding to observed coordinates, and

dqe
d + aqr +b ' 00 (5)
r r rj dt

Ii

for indices corresponding to hidden coordinates, where terms of second

order in qr have been neglected.

Specific constitutive equations will come from physical constraints

applied to equations (4) and (5).

Physical Constraints

The thermodynamic framework postulated in equation (1) is insufficient

to describe a usable constitutive theory. One must in addition define the

type of material behavior that the theory should predict. The material to

be considered herein is a so-called thermoelastic-plastic-creep material

such as aluminum or steel. Mathematically, this type of material may be

represented by:

Sij = Sij Emn , T}, (6)

where Sij is the stress tensor, Emn is the strain tensor, and { } signify

history dependence. The functional dependence of the stress tensor on

the strain history alleviates the necessity to include strain rate explicitly

on the right hand side of equations (6). At this point no restriction is



necessary regarding the mathematical definitions applied to stress and strain.

Uniaxial tests on thermoelastic-plastic-creep materials will yield the

general macrophenomenological behavior shown in Figures (1) and (2). It is

seen from the data that several phenomena which should be modelled by the

constitutive theory are: (1) the Bauschinger effect for reverse loading,

(2) the nonunique mapping from strain to stress, (3) the pronounced effects

of temperature and strain-rate, and (4) the general nonlinear behavior of

the material. It may also be noted from the figures that the entire load

history must be known in order to evaluate the state of strain, and that the

effects of temperature are quite similar to those caused by strain rate.

All of the above phenomena can be modelled using equations (6).

The microphenomenological behavior of the material is quite complex.

The material behavior is characterized by an elastically reversible deformation

component which is due to stretching of crystalline bonds, as well as a par-

tially reversible deformation due to sliding of grain boundaries and certain

complex phenomena such as dislocation glide and diffusion of molecules within

grains. Elevated temperature causes molecular excitation with resulting bulk

expansion. The Bauschinger effect is primarily due to microscopic stresses

called back stresses which are built up during deformation.

The most important physical restriction imposed by micromechanics is

that there is no physically observable mechanical difference between so-

called rate independent plastic strain and rate dependent creep strain.

These phenomena have often been described separately by macromechanians

even though they may be attributed to the same processes.

Incorporating the above physical phenomena into equations (6) and subjecting

6
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them to the thermodvnamic constraints imposed by enuations (4) and (5) will

result in a phvslcallv based constitutive theory for thermoelastic-plastic

materials.

Computational Considerations

It is important that the constitutive theorv founded on physical grounds

also be computationally usable in solving continuum problems wherein the state

of stress and strain varv spaclallv. This will require that the application

to kinematicsand conservation of momentum can be performed efficiently. To

perform this portion of the model development it is necessarv to be familiar

with the various methods for satisfying conservation of momentum. Since a

detailed explanation of those methods currently in use is bevond the scone of

this paper, only one method will be considered herein.

The procedure chosen here is the finite element method applied to the

virtual work variational nrinciple. The impetus for choosing this method is

that it is already widely in use in computer codes such as ACCIF. [51,

NONSAP [6] and ADINA f7]. Thus, development of a new constitutive theory

will reauire onlv modification of a relatively small portion of the code.

Tn order to determine the constraints imposed by this computational

scheme, it is appropriate to review briefly the method used in the computer

codes mentioned above. Recall that momentum is conserved by the theorem of

virtual work f6], given by

t+At t+At t+Atjf S dV = W ,(7)

V

where represents a variation, t+At denotes the time at the end of a load

Increment, and W represents the external work due to surface tractions and body

9



forces, both inertial and gravitational. The constitutive law and kinematic

ecuations are then inserted in equation (7) to obtain a working variational

princinle. Tn order to obtain a usable principle, however, it is necessary

to incrementalize the constitutive and kinematic eauations using

t+At t AS
s i + - At (8)

and

t+At A t
E.. F. + (9At

1. ii At

Thus, the constitutive mode] must be input in incremental or rate form. This

restriction results due to two computational difficulties. 'rirst, the solution

must be obtained in small incremental load steps in order to guarantee conver-

gence of the nonlinear equations resulting from constitution and kinematics.

Second, the fact that stress and strain are not uniquely related in the con-

stitutive theory requires that the constitutive theory be written in rate form

during single signed load increments in order to guarantee a unioue solution.*

Thus, equations (6) are replaced by

SS. = S (n EMl, T, k 1 , ... , k ) (10)

*Theoretically this restriction may be circumvented with proper state variables,

that is, equation (6) may be replaced with Sli = Sjj (E nn, Emn, T, k 1 ... kn),
where again k are state variables. Hiowever, to this author's knowledge, no

theories of tiis type are currently available with sufficient accuracy to model
the thermoelastic-plastic material.

+ . . - .. . . . . . .. .... n



where k. are state variables obtained from the strain history.1

It is to be noted that the above incrementatlon allows for stress to

be written as a function of strain and not vice versa due to the form of the

variational principle given in equation (7). This requires that displacement

conditions be specified on the boundary of the continuum, and that the compu-

tational procedure will result in a solution scheme for obtaininp unknown

displacements as opposed to stresses.

The resulting variational principle is linearized and then discretized

using the finite element method [6, 71 to obtain a set of coupled linear dif-

ferential equations in the displacements at nodal points. The nonlinearities

in the variational Principle are accounted for by using a modified Newton-Raphson

iterative scheme [7].

In summary, then, it is necessarv to obtain a constitutive law which

satisfies both the computational constraint given by equations (10) and the

thermodynamic restrictions in equations (4) and (5), as well as the physical

considerations previouslv noted.

Experimental Data Requirements

The amount of experimental data required to determine a working constitu-

tive model will significantly affect the usefulness of the model. Therefore,

consideration should be given to this final constraint in determining the most

useful constitutive theory.

11
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INVESTIGATION OF AVAILABLE TIIEORIES

The available theories for modelling response of thermoplastic materials

are of three distinct types: (1) the microphenomenologlcal or equation of

state theories [8, 9, 10], (2) the classical plasticity theories (7, 12, 13],

and (3) the nonlinear viscoelasticity theories [2, 13, 14, 15]. The first

group is derived primarily from studies of the microphysical characteristics

of the material. Many so-called unified theories, wherein creep and plasticity

are considered to be a single inelastic term, fall within this group. The

plasticity theories are primarily macrophenomenological in nature and are

generally based on the notion of a yield surface in stress space. The visco-

elastic theory derives mainly from thermodynamics, with the constitutive

relation usually written in convoluted form.

Although the equation of state theories are receiving considerable

attention at this time, their extreme variation in formulation makes it an

impossible task to consider them here. It is hoped, however, that valuable

information about the remaining two groups may be obtained from microphe,"-

nology. Thus, the theories considered hire wil I be plasticity and nonlinear

viscoelasticity. For convenience only uniaxial theorv is presented, although

three-dimensional theory is analogous.

Classical Plasticity Theory

The author has previously proposed an extension to isothermal plasticity

theory to account for thermomechanical and creep behavior [11, 16, 171 and

similar to theories proposed by Snyder and Bathe [7] as well as Yamada and

Sakurai [12]. That theory is first reviewed briefly.

Recall that in plasticity theory one postulates the existence of a yield

surface in stress space, which may he extended to include temperature by

1'2



= k(fdcP, T) , (11)

where 0 is the state of stress, a is the center of the yield surface in

stress and temperature space, and k represents the yield surface size as a

function of the history of uniaxial plastic strain, fdC , and temperature, T.

Inside the surface F all action is elastic, whereas on this surface the

-p
element undergoes some permanent deformation. The parameters a and fdc may

be interpreted as state variables representing the dislocation arrangement

and dislocation density, respectively. Both may be conveniently obtained

from an appropriate hardening rule and phenomenological uniaxial test data.

The yield function [equation(I1)] is supplemented with a flow rule, usually

given by the normality condition:

-P 3
d d " (12)

where dX is a scalar to be determined and the superscript P denotes a rate

independent instantaneous component of Inelastic strain. In addition, it is

assumed that the state of stress Is dependent on the elastic strain only:

P C cT
o! = F( - - r C ), (13)

where the term in parentheses Is the elastic recoverable strain caused bv

bond stretching, and F is the elastic modulus. In addition, the superscripts

C and T denote rate dependent creep and temperature dependent thermal strains,

respecttvelv. Note that equation (13) satisfies physical constraints only if

the sum of plastic and creep strain gives the total inelastic and nonrecoverable

strain.
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A combination of equations (11) through (13) in rate form will result

in the following incremental constitutive law during plastic loading [16]:

do =- Et+ d t 1 30 E d - dE dFT

dt H' 3F 3F + Et+dtaF F dt dt dt

+ d - Et+dt F F dE t Pt Ct Tt)
d t ac 3 ( dt( - - -

H' F 3F +E EtdtF3F

[ t~dt 1

H' IF 3F + Et t JF F

[ J0 3)o

where H' is the slope of the uniaxial stress-plastic strain diagram, and

superscrints t and t+At denote parameters at the start of the time step and

the end of the time step, respectively. The time dependence in the elastic

modulus is caused by a temperature change during the load step. Note that the

form of equation (14) implies that all parameters on the right hand side may

be determined a priori, that is, without recourse to the current stress incre-

ment. Note also that the above constItutive law in rate form is not rotation-

ally invariant [18, 191. Therefore, its use is restricted to infinitesimal

strains only.

The above constitutive law has been implemented to the finite element

code AGCIE T [51, along with a nonisothermal combined isotropic-klnematic

hardening rule in order to account for the Bauschinger effect during noniso-

thermal cyclic loading. The model has been shown to give results comparable

14



to experiment for some thermomechanical load histories [16, 17]. Two signifi-

cant shortcomings of the theory should be pointed out herein. First, the

above theory was obtained without recourse to thermodynamics. Second, the

assumption that creep and plasticity may be uncoupled violates the observation

that they are physically indistinguishable phenomena.

Nonlinear Viscoelasticity Theory

The nonlinear viscoelasticity thoery is established directly from the

thermodynamic equations of motion [equations (4) and (5)]. These equations

are first specialized by assuming that:

adr qr

3q i m 0

and
d
r 

(15)r 0

where 0 E T - TR and TR is the reference temperature. It follows that

equations (4) and (5) may be rewritten as:

3H e + b' dq, Q + a , (16)

and aq m i dt i m

a b -  '0 (17)
rs s rj dt r

Now assume further that

ar = aFas; aF = aF(qm9 T) > 0 , (18)

bjj = aDbij; aD = aD(q. , T) > 0 , and (19)

. . . . . .. .. I I5 II I , - " " " - I .ra , . -



i aS~i;a S = as(q m , T) > 0 (20)

where ars bii, and i are constants. The resulting equations will be:

4d q I
ai.q1 + b i d -  = i +  (21)

where

3H

i = I(Q +  q eaq e (22)Sa IFinqn D (
F i

a S
= - (23)
aF

and the reduced time parameter,

t

= dt (24)
aD

0

These equations are identical to those obtained by Schapery with the exception

of the thermal dependence of a F and a . Schapery has shown that using the

second order free energy expansion in the equations of motion (21) is analogous

to a generalized Maxwell model with isothermal elastic and thermal expansion

coefficients. This analogy, shown in Fivure 3, is also true in equations (21)

except that these coefficients are now temperature dependent through the terms

a F and a .

Now consider a single Maxivell element, as shown in Figure 4. Tf one

considers small displacements only, then the generalized force Q may be re-

placed by the unfaxial stress 7, and the generalized displacement 9 Is repla,d

with the strain c. The differential equation relating stress to strain cran be

16
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dFe E '2  E4E .. ' 4

qQ

E Er aF , Ir = IF r =  -F

aF = aF(qm,T) I aD = aD(qm,T) , as = as(q.,T)

Er, lir, r = CONSTANT

E'r Spring coefficient for the rth element

a/ = Coefficient of thermal conductivity
for rth element

7/r =Dashpot viscosity for rth element

Figure 3. Generalized Maxwell Model with Temperature Dependent Elements
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ELEMENT T X =o4 T) a o2 a

ELEMENT S - Em E T) aFE

ELEMENT D- E1M EIM( FT) a D
ELEMENT D- -_ rE4 =lM( e,T )= a

So,E,TI = CONSTANT

as = as (&,T)

aF = aF (e,T)

aD= aD(eT)

Figure 4. Single Nonlinear Maxwell Element
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found to be

dE dET I do 1 dEM 0 t _r
-+ -+ ,(25)dt dt E t+dt dt E t+dtdt Et + na D

where for convenience EM is used rather than the equivalent form EaD, and 
T

denotes the strain in the spring due to a temperature change. Now assume 4
that the entropy production coefficient aD may be uncoupled as follows:

___ d 
P

.S-
a D D

a D dt (26

where dc /dt is the uniaxial plastic strain rate and the nonnegativity property

imoosed by thermodynamics still holds. Since the uniaxial plastic strain rate

is both stress and temperature dependent, equation (26) may be rewritten in

the following form:

1 _ + g + (27)
aD L\T /tdt\ a-/t dtJ

A further modification gives:

r -P/3o\ T + -P\I + g dt + (28)

aD g 3t \--/nt]

Substituting (28) into (25) gives

dc deT  I do 1 dE ( t

dt d--t +  t+d t -dt - t+d t -dt t
EM EM EM (29)

+ )f+ [ (~ a 23' T / o(I -+ P

19



Now define

de -G g )( o t P-a \ + (an d d]

dt T1 au dt~ \j3 dt and (30)

of , (31)dt rn

so that the strain components in the Maxwell model are:

I
C T cam(TTRT R (32)

E /EM  (33)£

T -P
P ( g D_ (5O) t dT + fa da , and (34)

TR 0 t

t

SC af dt , (35)

0

where TR is the reference temperature at which the slider block undergoes zero

strain. It can be seen that the viscous terms have been uncoupled into a rate

Independent plastic term (cP) and a rate dependent creep term (E C). Concep-

tuailv, this can be described as shown in Fipure 5. The plastic slider block

Is seen to slide according to the stress and temperature inputs, but indepen-

dently of time. Physically, this analog describes the total dislocation

movement in a polycrvstal as being composed of two segments: a portion of

dislocation movement which occurs instantaneouslv, or at least as fast as the

loading is anDlied, and a portion such as diffusion which occurs in a delaved

206 L- Jim"



ET = M(T-TR)

j E = "/ Em

L- ..-1 C = C(o-,,T,t)

E 0"

Figure 5. Specialized Nonlinear Maxwell Element with 
Rate

Independent Slider Block
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fashion. However one defines these terms, the end result must be that the

sum of the strains in the plastic slider block and dashpot must equal the total

inelastic strain.

If one considers strain as the input or independent variable it can be

seen that equation (29) is a nonlinear first order differential equation in

the dependent variable o. There are several accepted procedures for solving

the equation for the stress. Among these are closed form techniques such as

a Fredholm or convolution integral, and approximate methods such as Runge-

Kutta. Let us first consider a first order Runge-Kutta, sometimes called

Euler's method. In this method the differential equation is solved for the

stress rate, and the stress terms on the right hand side are assumed at time t.

Thus, solving equation (29), one obtains

t+dt t t+dt d dc
da =N goM Edc dc d

go + EM go

tdd t

Da g +gt t+dt t

t

+ EM t go \ -dT (36)

[ o gat + EM t+dt go

22



where, in this case

dC /d C t
d d _ a f (t t Tt (37)dt dt C '

and the dashpot coefficient n is found from equation (26) and (30) to be

t g(o,c,T) (38)

Inspection of equation (14) reveals that if one defines

I F 3F (39)
g = Ct T a

where F is as defined in equation (11) and its partial derivative is evaluated

at a = a(t), then equation (39) is identical to the plasticity relation given

by equation (14). To complete the theory it is necessary only to assume that

g and f are zero for unloading. The impetus for using a third order expansion

of free energy in conjunction with equations (15), (16), and (26), as well as

the first order Runge-Kutta approximation is therefore justified in that

introduction of these assumptions into the thermodynamic constraints [equa-

tions (4) and (5)1 will bring about the recovery of the nonisothermal plasticity

theory proposed by this author. The conclusion from this derivation is two-

fold. First, the classical plasticity theory is thermodynamically consistent

under nonisothermal conditions, and the entropy generation term aD may now be

defined precisely for the nonisothermal plasticity theory proposed by the

author. Second, the nonlinear viscoelasticity theory may be used to extend

the current theory to model more complex phenomena.

23



The latter statement is illustrated by the fact that the definition of

the dashpot coefficient n given by equation (38) requires that

I d P (40)
a D = g ( dt dt/

Therefore, the recombination of the plastic and creep strain rates into

a single inelastic strain produces a unified theory which is accommodated

quite simply using reduced time.

Now consider a comparison of an exact solution to equation (29), as

opposed to the first order Runge-Kutta approximation given by the plasticity

theory [equation (14)]. For this purpose we introduce reduced time [equation

(24)) into the differential equation to obtain

1 d d de T  E dEM (41)
EMt+dt d dE d cEit+dt d

Equation (41) may be Laplace transformed in reduced time to give

-F t+dtT

= EMt+dtE - ( -p') d(c - c T )

0 fe rld ' '

f _EMt+dt
EL ~t __ (41-4)') dEM

+ - dE' di' (42)
v e  l

0

where 41' is the dummy variable of integration, and 4) is the value of reduced

time at time t+dt. Valanis has shown that a single Maxwell element is in-

sufficient for modelling the response of metals [151. However, for moderate

load increments equation (41) is adequate since the generalized Maxwell model

necessary to characterize metal response consists of nonoverlapping exponentials.

24



Thus, a single exponential is predominant at any strain level, with the appro-

priate Maxwell element described by the current material data in equation (42).

The strain rate and elastic modulus rate during a load step may be con-

sidered to be constant inputs:

d(c-T) constant (43)
dt'

and

dEM
dt = EM constant (44)

so that equation (42) may be reduced to the following form

_EMt t tEMt+d tt+dt - (4-,)t+dt ____(p
1)45

= t+dt f e n dt' + CE EM f e ( ) dt'

0 0

Therefore, the stress increment during a finite load step is

do = o(t+dt) - o(t) = (EMt)faDe n d' - o(t) (46)

0

In general equation (46) must be solved numerically because the entropy

generation term aD is a function of time. It should be noted that the fune-

tional form of the nonlinear viscoelastic law proposed above is similar to

that proposed in the classical plasticity theory [equation (14)1. In addition,

its application to a finite element method should be straightforward due to

the proper rate form.

25
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A COMPUTATIONAL COMPARISON

For purposes of comparing the computational efficiency of the two models

an example problem has been chosen which is traditionally quite difficult to

solve in finite element codes. The problem involves a material not unlike

aluminum with isothermal zero tiv" stress-strain curves as shown in Figure 6.

At elevated temperatures the creep strain rate may be approximated by a power

law:

dF C  9 x 1012 5,(45
dt = T(oK) O)i

The presence of the extremely high creep rates given by equation (47) requires

that most finite element codes solve this problem using very small thermo-

mechanical load steps, thus consuming considerable computer time. This

circumstance is due to the fact that since the stress increment is not known

a priori, the creep strain rate must be estimated using the stress at the start

of the step.

The material described above has been subjected to two uniaxial thermo-

mechanical load histories, as shown in Figure 7. Since the total strain for

this problem can be determined by integrating equation (47) and adding to the

elastic and'plastic strains, the solution may be obtained without resort to

the constitutive laws presented herein. However, a measure of the accuracy

of the constitutive theory is to apply the exact total strain increment to

the constitutive theories and determine which better predicts the proper

stress response. This problem becomes particularly interesting when the

thermomechanical load is applied at slower and slower rates, thus inducing

rapidly increasing creep strain.

26
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Figure 6. Material Data for Computational Test Cases
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Figure 7. Load Histories for Test Cases I and 11
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Under the conditions noted in this example, if one assumes that the

entropy generation term aD is constant during the load step, which is identical

to plasticity theory, then equation (46) may be Integrated in closed form to

give

-Mt+dt

dE = F t+dt 0(t)] [i - n (48)- e

Valanis [14] has succeeded in characterizing the reduced time 41 for isothermal

loadings. However, since the plastic strain rate [equation (30)] in this case

is both temperature and stress rate dependent, this author has not yet found

a way of determining this parameter. Therefore, in order to perform this

computational comparison it was necessary to assume the plastic strain rate

in equation (26) could be determined, and the exact values were utilized in

solving equation (48) for the examples presented herein.

In addition, two other methods of solution were tested in this study.

First, a fourth order Runge-Kutta (Kutta-Simpson 1/3 rule [20]), was tested

in conjunction with equation (14). Second, the subincrementation approach 1211

was used with equation (14). In the latter method one cycles through the

constitutive law several times using subincremental loadings on each load step.

For these tests the subincrement was limited to a total strain subincrement

of .0005 IN/IN and was not to exceed one hundred subincrements during the load

steps.

Results of the various solution procedures are shown in Figures 8 and 9,

wherein all analyses except subincrementation were performed in a single

time step. The results were obtained by first applying the thermomechanical

loading in the time period shown on the abscissa and determining the exact

strain increment by integrating equation (47) and adding to the elastic and

29



0 (KSI)

601

I"TORDER
50 RUNGE-KUTTA

40-

30- OLNA
VISCOELASTICIT Y

20- XC
SUBINCREM NTATION

0-

-40T f"ORDER
RUNGE-KUTTA

-60

1 5 10 50 100
(SEC)

Figure 8. Computational Results for Test Case I

30



0'(KSI)

90 4

8013TORDER

70- RUNGE-KUTTA

VISCOE.LASTICITY

0-

-30- 4 THORDER
RUNGE-K UT TA

5 10 50 100
t(SEC)

Figure 9. Computational Results for Test Case HT

31

A



plastic increments shown in Figure 6. This exact strain increment was then

used to determine the predicted stress increment in each of the four models

discussed above. All of the models are seen to diverge from the exact

solution for decreasing load rate. It is seen that the fourth order Runge-

Kutta is extremely unstable and therefore unusable. This is due to the fact

that the differential equation becomes increasingly "stiff" [22, 23] for in-

creasing time. It is apparent that the first order Runge-Kutta and nonlinear

viscoelasticity are at least stable, and will lead to an over approximation

or safe estimate of the stress. The subincrementation method is demonstrated

to be the best computational scheme for the examples considered here.
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CONCLUSION

The author has compared two constitutive theories in this paper on the

basis of physical and computational accuracy. It is seen that both models

satisfy thermodynamic as well as physical constraints. In addition, both may

be constructed in a rate form suitable for application to finite element com-

puter codes. Preliminary evidence indicates that subincrementation used with

the classical plasticity theory better satisfies computational requirements

than does the nonlinear viscoelasticity. However, this author has considered

only a specific type of nonlinear viscoelastic model, and final judgment on

the issue is therefore not possible. In addition, there are certain aspects

of the viscoelastic model such as the single integral form and the characteri-

zation of state variables via entropy generation terms which warrant further

study.

t
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